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Abstract

The purpose of this paper is to investigate the feasi-
bility of using mouse movement patterns solely as a
method for uniquely identifying individual users on a
webpage. Specifically, this paper aims to analyze raw
cursor movement and basic webpage interaction data
to determine if these elements can be used as dis-
tinctive biometric identifiers via feature engineering
and a random forest machine learning model. Taking
raw data from theMouse Movement Tracking dataset
from huggingface.com, motion-based features, spatial
features, and pause and idle features are used in an
attempt to classify individual users. As user iden-
tification via fingerprinting has become more preva-
lent in many aspects of tracking, for example, cookie
syncing, investigating the feasibility of cursor-based
fingerprinting is an important piece of knowledge to
describe further the surface of vulnerability for users’
personal privacy online.

1 Introduction

In the rapidly evolving landscape of online user-
tracking, unique user identification has become a cen-
tral piece of many tracking goals, such as cookie-
syncing, targeted advertisements, and content sug-
gestion. Online fingerprinting has become a major
vector for these types of identification tasks. Whether
that be directly through cookie sharing, JavaScript,
CSS, or otherwise, users’ identities and personal data

is being collected and categorized. Traditional fin-
gerprinting leverages computer attributes or such as
installed fonts, screen resolution, or browser plug-ins,
but a newer line of research investigates whether bio-
metric trends in human-computer interaction, specif-
ically mouse-cursor movements, can be used to iden-
tify users. The motivation for this method is primar-
ily the persistence of the tracking method across sites
and even on tracking blocking or private browsers.

This work investigates the viability of using a clas-
sification Machine Learning model to accurately iden-
tify specific users based on their cursor movements
across web pages. This work takes the Mouse Move-
ment Tracking dataset and applies feature engineer-
ing to create new, highly focused metrics that will
uniquely describe a user’s mouse movement tenden-
cies. These extracted features will then be used in a
Random Forest model to evaluate the data and re-
port on a classification task.

2 Background and Related
Work

Significant work has been done in the field of cursor
tracking, in large part related to the field of Human-
Computer Interaction. Much of the work is more
focused on psychological trends of user attention, fo-
cusing on color and engagement metrics. For exam-
ple, Huang et al.[1] pairs cursor movement with eye-
tracking to determine user focus on a given webpage.
Additionally, Warnock & Lalmas [2] investigate fur-
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ther into cursor-tracking’s scalability in conjunction
with other tracking methods and traditional web an-
alytics. In addition to the technical work done in this
area, ethical works have also been produced to discuss
the advancement of tracking technologies. For ex-
ample, Leiva [3] addresses the privacy concerns that
come with mouse tracking and argues for more reg-
ulatory practices to protect users from exploitation
and unauthorized data collection.

For our work, we also implement a Machine Learn-
ing Classification Model. The model we chose is
the Random Forest Classifier. A Random Forest
is an ensemble machine learning model that utilizes
the autogeneration of many individual decision trees
that work together to decide on a final classification
among a series of options or classes. Each decision
tree is a ”weak classifier” and makes predictions by
repeatedly asking yes/no questions about the features
of the input data to try to narrow down the result.
These features are randomly assigned to each decision
tree, and each tree individually attempts to guess the
user’s identity among a set of given options. While
a single decision tree can easily overfit and memorize
the features it’s given without learning real patterns,
a Random Forest builds many trees. Each tree is
then trained slightly differently, being given a ran-
dom subset of the features of the training data. In
the context of our problem, when a new mouse move-
ment’s feature-values are input for classification, the
Random Forest passes it through each decision tree
and collects votes from each tree on who they think
the user is. After which, the majority vote wins and
becomes the model’s final prediction.

3 Methodology

3.1 Dataset

The Mouse Movement Tracking dataset, originally
collected by Dan Petrovic (DejanSEO) and hosted
on Hugging Face, provides detailed recordings of user
mouse activity across web sessions. Prior work has
utilized this dataset for tasks such as user behavior
modeling, predictive analytics, user interface opti-
mization, and fraud detection.

The dataset contains approximately 686,000 individ-
ual mouse events, stored in Parquet format. Each
event captures both spatial and temporal character-
istics of user interaction, including cursor position,
timestamps, and screen attributes. The data is pro-
vided as a single training split without a predefined
validation or testing partition. Mouse movements are
recorded during free-form browsing behavior, encom-
passing both periods of active interaction and inter-
vals of idleness.

3.2 Feature Engineering

The feature engineering process involved a multi-
stage transformation of raw interaction logs into
structured, informative representations. This process
is essential for revealing latent behavioral patterns
that are not immediately apparent in the original
data but are potentially highly discriminative for
differentiating users.

A. Data Cleaning and Preprocessing
Initial preprocessing steps were applied to ensure the
integrity and reliability of subsequent analyses. Miss-
ing values were identified and removed to preserve
consistency across user sessions. Basic noise filtering
was performed: cursor records with zero movement in
both distance and time were excluded, as these events
likely corresponded to spurious readings rather than
genuine user actions. This cleaning process provided
a more robust foundation for downstream feature ex-
traction by minimizing the influence of outliers and
measurement artifacts.
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Feature Description

session id Unique identifier for a user session
timestamp Event occurrence time (Unix

timestamp in milliseconds)
datetime ISO-formatted human-readable

timestamp
type Event type (enter, click, leave, etc)
x,y Cursor position coordinates on the

screen
screen width and
screen height

User’s screen dimensions during
the session

time delta Time elapsed since the previous
event (milliseconds)

x prev, y prev Cursor coordinates from the pre-
ceding event

dx, dy Relative movement in the x and y
directions

distance Euclidean distance between con-
secutive cursor positions

Table 1: Feature descriptions for the Mouse Move-
ment Tracking dataset.

B. Feature Creation
Upon establishing a clean dataset, feature engineer-
ing was conducted to derive a comprehensive set of
descriptors targeting four principal categories: kine-
matic, directional, spatial, and temporal attributes.
These engineered features aim to capture different
facets of user behavior, enabling a more nuanced
and distinctive profile for each session.
To model the dynamic properties of user inter-
actions, we calculated the instantaneous speed
of the cursor, defined as the distance traveled
divided by the elapsed time between two events
(speed=distance/time delta). Building on this, we
computed the acceleration as the rate of change
of speed between successive points (accelera-
tion=speed.diff()/time delta). These kinematic
features characterize the physical movement style
of users, capturing traits such as smoothness,
hesitancy, and abruptness, which may vary system-
atically across individuals.
Directionality served as another important behav-
ioral signal. We computed the movement angle
relative to the horizontal axis using the arctangent

function arctan2(dy,dx). To capture variations
in path sharpness, we further derived the angle
difference between successive movements. Frequent
or abrupt directional changes can serve as distin-
guishing characteristics, as users often differ in
their degree of movement smoothness or hesitation.
Together, these directional features provide a richer
understanding of how users navigate the screen
environment.
Spatial interaction patterns were represented by par-
titioning the screen horizontally into three zones —
left, middle, and right — based on the x-coordinate
values. Each cursor event was assigned to one of
these zones, and session-level distributions were com-
puted by normalizing the frequency of cursor points
within each quadrant. Spatial tendencies often
reflect ergonomic habits, dominant hand preference,
or interaction strategies, offering another behavioral
signature. Additionally, curvature was introduced
as a derived spatial feature, defined as the ratio of
the angle difference to the corresponding traveled
distance. This feature quantifies the linearity or
”curviness” of movement paths, further enriching
the behavioral profile.
Given the inherently temporal nature of mouse
movements, we introduced features to capture the
rhythm of user interaction. An idle state was defined
whenever the time delta between consecutive events
exceeded a threshold value. Each event was flagged
as active or idle, allowing the computation of an idle
ratio for each session (i.e., the proportion of idle
events). These temporal patterns provide insights
into user cognitive rhythms, such as pausing to read,
reflect, or navigate. We also aggregated session-level
timing metrics, including total active time and
the number of idle periods, to capture broader
engagement trends.

C. Feature Aggregation Following the construction
of point-level features, a session-level aggregation
process was applied to generate a fixed-length feature
vector for each user session. This transformation
was essential for preparing the data for traditional
machine learning workflows, which typically assume
uniform input dimensions. For continuous features
— including speed, acceleration, angle difference,
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and curvature — we computed a series of statis-
tical aggregations: the mean, standard deviation,
maximum, and minimum values across all recorded
events within a session. These statistics encapsulate
the central tendency, dispersion, and range of user
behaviors during interaction. For categorical features
such as quadrant usage and idle state, we computed
normalized frequencies or proportions to capture
relative patterns independent of absolute session
length. For instance, the quadrant distribution
vector for each session indicates the proportion of
cursor events within each screen region, while the
idle ratio quantifies the proportion of idle versus
active events. By applying this aggregation strategy,
we effectively transformed highly variable-length
sequences of raw interaction logs into standardized,
compact session-level descriptors. This representa-
tion preserves essential behavioral dynamics while
enabling compatibility with a wide array of super-
vised learning models, such as logistic regression,
support vector machines, and tree-based classifiers.

Feature Justification
The selection and design of features were motivated
by prior empirical research and cognitive theories of
motor control, attention, and interaction behavior,
with the objective of maximizing discriminative
power across users. Each category of features was
crafted to capture distinct aspects of user behavior
that are both stable over time and uniquely individ-
ualized.

Kinematic features Features such as speed and
acceleration were engineered to model the dynamic
characteristics of mouse movements. Human motor
behavior exhibits significant individual variability
in terms of movement smoothness, hesitation, and
control precision. Users differ consistently in their
preferred movement velocities and their rates of
acceleration or deceleration, making these metrics
strong predictors of user identity. Fast, erratic
cursor trajectories contrast sharply with slower,
more deliberate movements, offering a reliable basis
for classification.

Directional features Directional attributes, in-

cluding movement angles and angular changes
between consecutive movements, capture spatial
navigation tendencies. Some users exhibit highly
linear movement patterns characterized by small
angular deviations, whereas others demonstrate
more meandering paths with frequent sharp turns.
These patterns reflect underlying strategies in visual
search, ergonomic positioning, and interaction plan-
ning, all of which are known to vary idiosyncratically
across individuals.

Spatial features Spatial interaction tendencies were
quantified through quadrant usage distributions and
curvature measurements. A user’s preference for
specific regions of the screen — whether gravitating
towards the left, center, or right — can be influenced
by dominant hand usage, visual scanning strategies,
and even physical screen setup. Curvature, as a
measure of movement path ”curviness,” further
distinguishes users who prefer direct trajectories
from those whose movements are more circuitous.
Both features collectively provide spatial signatures
that are difficult to consciously imitate or disguise.

Temporal features Temporal dynamics, including
idle ratios and inter-event time intervals, were
incorporated to capture differences in cognitive pro-
cessing and decision-making styles. Periods of cursor
inactivity may correspond to reading, reflection, or
hesitation, whereas uninterrupted active movement
indicates a more impulsive or goal-driven interaction
style. These temporal rhythms are highly individu-
alized and often stable across different browsing or
task contexts, making them particularly valuable for
behavior-based user identification.

3.3 Model Design

To achieve the monumental task of session-level user
identification based on mouse movement and click-
ing behavior alone, we implemented a Random Forest
Classifier machine learning model. The reason we de-
cided to choose this type of machine learning model
was that Random Forests are notoriously resilient to
noise, scalable to a high number of features, and ro-

4



bust against overlapping and irrelevant features. In
addition, it lacks the significant dataset size demands
and ultra-long training times associated with deep
neural networks. These are all practical necessities
that fit well with our circumstances, given the lack
of publicly available large-scale clean datasets. To
the contrary, we do acknowledge the limitations of
this approach, especially given that this approach
may not fully preserve the time-series element of the
data. To overcome this, many of our features aimed
to preserve relevant time-series elements of the data
by capturing a variety of trends, patterns, and tempo-
ral tendencies rather than relying solely on averaging
and simple summarization. Given that our original
dataset contained only one session per user, data aug-
mentation was necessary to create usable train/test
set splits. To do this, we split each original session
into five smaller sub-sessions, which ensures our data
includes sufficient per-user data for training and eval-
uation. When it comes to our model’s hyperparam-
eters and tuning, we adjusted the number of trees
(n estimators) and the maximum depth of the trees
(max depth). These were automatically tuned using
GridSearchCV with 3-fold cross-validation, and tun-
ing was set to prioritize and maximize ROC AUC
scoring. As is typical, training and evaluation were
performed using an 80/20 train/test split, with strat-
ified sampling to preserve the class balance across a
total of 566 individual users.

4 Evaluation

4.1 Evaluation Metrics

In the evaluation of our model’s performance on our
high-class-degree, 566-user classification task, we uti-
lized multiple standard metrics:

• Top-1 Accuracy

• Top-k Accuracy

• Macro Precision, Recall, and F1 Score

• ROC AUC (One-vs-Rest)

Top-1 accuracy measures the proportion of test ses-
sions where the model’s first guess was correct. Top-
k measures the proportion of sessions where the true
user was among the model’s top k guesses. Macro
precision, recall, and F1 are still the standard con-
fusion matrix performance metrics averaged equally
among all users, but utilizing them in our context gets
a bit tricky and requires nuance. Traditionally, pre-
cision, recall, and F1 are invented for binary classifi-
cations or small-class problems such as simple spam
email classification. This is because binary settings fit
naturally into the simple 2x2 confusion matrix struc-
ture of true positives, true negatives, false positives,
and false negatives. However, our case is not just
non-binary and multi-class, it’s an exceedingly high
class-degree of over 500. When you have a defined
precision and recall in this context, each class has
to be scaled down to a binary analysis, conceptually,
comparing itself with all other classes, also known as
One-vs-Rest (OvR). As a result, precision and recall
scores tend to drop substantially as the number of
classes increases to high numbers like 566. At this
level, the interpretation of precision and recall scores
becomes harder and requires other complementary
metrics and additional analysis, and is often com-
pared with random chance prediction of 0.17% (=
1

566 ). This is why, in addition to all these metrics,
we also used Macro ROC AUC (OvR) (Receiver Op-
erating Characteristic curve Area Under the Curve
One-vs-Rest). ROC AUC (OvR) measures how well
the model ranks the correct user higher than incor-
rect ones, averaged across all classes. More sensibly,
this is a measure of how well the multi-class classifier
separates each single individual class from the rest
(One-vs-Rest).

4.2 Results

Normally, for classifiers, a top-1 accuracy of 28% is
low, but it’s important to note that random guess-
ing across 566 users would yield only a 0.17% ac-
curacy. As a result, this model’s performance is a
significant improvement, over 160 times better than
random chance, despite the small dataset and inher-
ent high complexity of the problem. The achievement
of a top-5 accuracy of 45% indicates that, while the

5



Metric Score
Accuracy 28%

Top-3 Accuracy 39%
Top-5 Accuracy 45%
Macro Precision 21%
Macro Recall 28%

Macro F1 Score 23%
ROC AUC (OvR) 0.932

Table 2: 566-class Random Forest Classifier Perfor-
mance

model’s first guess was incorrect, it ranked the cor-
rect answer among its top guesses in nearly half the
cases. Furthermore, the ROC AUC (OvR) result of
0.932 indicates that the model successfully learned
meaningful patterns that could effectively distinguish
users, even while in the presence of high noise and
cross-session variability.

4.3 Discussion and Interpretation

When interpreting the results of this project, it’s
important to consider the nuances in its scope and
limitations. In particular, several challenges arose
throughout this project:

• Overall Task Complexity
Generally, mouse movement data is highly com-
plex and inherently noisy, making fingerprinting
a difficult task. In addition, human behavior
can vary somewhat between sessions, especially
given the potential inherent variances in emo-
tional state, task type, and hardware.

• Data Constraints
Most of the problems we ran into were associated
with the inherent constraints of the dataset we
used. Firstly, there’s only one user per session,
which requires us to augment and split each user
into multiple sub-sessions, reducing the integrity
of the data and amplifying any existing noise.
In addition, most of the sessions had holes in
the data points, bots instead of real users, or
just simply not enough data points to augment.
Finally, each session is extracted from the user

performing a random series of tasks of random
length, which adds to the inherent challenge of
extracting real habitual user tendencies.

• Model Limitations
Random Forests work incredibly well for clear,
structured-feature contexts, but they struggle to
learn new details and representative attributes
from raw sequences, especially when compared
with neural networks. In addition, with our ap-
proach, much of the time-series data may be
overlooked, given that direct time-series infor-
mation is not incorporated into the training. Fi-
nally, in most fingerprinting contexts, it’s nec-
essary to add a new user in a low-cost method,
and a Random Forest requires retraining every
time a new user is added.

Given these challenges, the actual achieved perfor-
mance is seen more as a proof-of-concept than a real-
world-feasible product. Our results demonstrate a
foundation for future exploration of things like more
sophisticated neural networks, particularly ones that
incorporate time-series directly and embed mouse
movement trajectories into vector representations.
For example, deep neural network (DNN) models
trained using triplet loss or contrastive learning could
learn, more directly, user-specific embeddings that
capture the more nuanced and generalizable, individ-
ually unique styles hidden in movement data.

5 Ethics

The ethical discussion around tracking has been a
long and intricate one. In the making of this paper,
we acknowledge the privacy issues that stem from
user tracking broadly, and the greater danger that
mouse tracking might pose. We hope that through
the research done in the area of mouse tracking and
subsequent user identification, others will make ef-
forts to protect users from this attack. While this
paper only addresses the viability of this tracking vec-
tor, as new methods continually emerge to undermine
the privacy of users, we are hopeful that the privacy
community will stay a step ahead of these new meth-
ods by conducting research to evaluate these methods
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and proactively protect against them.

6 Future Work

In this paper, we have explored mouse-based identi-
fication, and we feel that there are many ways future
work could be taken to learn more deeply about this
topic. The first testing that should be done is real-
world testing with a significant sample size and an
appropriate testing situation. Although time did not
allow us to explore this testing first-hand, we hope
that designing a multi-site testing tool might allow
more benefits and gaps of the mouse-based identifi-
cation methodology we explored. Additionally, other
methods of biometric tracking may be viable for ex-
ploitation, such as typing habits, vocabulary habits,
and others that could be explored similarly.

7 Conclusion

This work explored the feasibility of using mouse
movement patterns as a means of uniquely identi-
fying users through behavioral fingerprinting. By
applying targeted feature engineering techniques to
the Mouse Movement Tracking dataset and train-
ing a Random Forest classifier, we demonstrated that
mouse-based user identification is surprisingly effec-
tive, pointing to the plausibility of implementation.
The model achieved a top-1 accuracy of 28% and a
ROC AUC (OvR) of 0.932 across a 566-user classifica-
tion task. This represents a substantial improvement
over random guessing and highlights the presence of
highly individualized patterns embedded in user in-
teraction behavior. While the results validate the
concept of cursor-based fingerprinting, several limita-
tions, including dataset size, session variability, and
the lack of sequential modeling, still make implemen-
tation costly and difficult. Nevertheless, the find-
ings raise important concerns about the expanding
attack surface against users’ online privacy. As tra-
ditional tracking methods become increasingly reg-
ulated, behavior-based identification techniques like
mouse tracking may offer new vectors for user profil-
ing that are harder to detect and prevent.

References

1. Huang, Weidong. (2007). Using eye track-
ing to investigate graph layout effects.
Asia-Pacific Symposium on Visualisation
2007, APVIS 2007, Proceedings. 97-100.
10.1109/APVIS.2007.329282.

2. Warnock, David, & Lalmas, Mounia.
(2015). An exploration of cursor track-
ing data. arXiv:1502.00317 [cs.HC].
https://arxiv.org/abs/1502.00317

3. Leiva, L. A., Arapakis, I., & Iordanou, C.
(2021). My mouse, my rules: privacy issues
of behavioral user profiling via mouse tracking.
https://doi.org/10.48550/arxiv.2101.09087

8 Github Link

https://github.com/nicoleclucas/mouse_data_

notebook

7

https://github.com/nicoleclucas/mouse_data_notebook
https://github.com/nicoleclucas/mouse_data_notebook

	Introduction
	Background and Related Work
	Methodology
	Dataset
	Feature Engineering
	Model Design

	Evaluation
	Evaluation Metrics
	Results
	Discussion and Interpretation

	Ethics
	Future Work
	Conclusion
	Github Link

